
 Mean field method applied to the new world sheet field theory: string formation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP03(2009)088

(http://iopscience.iop.org/1126-6708/2009/03/088)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:39

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/03
http://iopscience.iop.org/1126-6708/2009/03/088/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
3
(
2
0
0
9
)
0
8
8

Published by IOP Publishing for SISSA

Received: January 27, 2009

Accepted: February 27, 2009

Published: March 13, 2009

Mean field method applied to the new world sheet

field theory: string formation1

Korkut Bardakci

Department of Physics, University of California at Berkeley,

University of California, Berkeley, California 94720 U.S.A.

Theoretical Physics Group, Lawrence Berkeley National Laboratory,

University of California, Berkeley, California 94720 U.S.A.

E-mail: kbardakci@lbl.gov

Abstract: The present article is based on a previous one, where a second quantized field

theory on the world sheet for summing the planar graphs of φ3 theory was developed.

In this earlier work, the ground state of the model was determined using a variational

approximation. Here, starting with the same world sheet field theory, we instead use the

mean field method to compute the ground state, and find results that are in agreement with

the variational calculation. Apart from serving as a check on the variational calculation,

the mean field method enables us to go beyond the ground state to compute the excited

states of the model. The spectrum of these states is that of a string with linear trajectories,

plus a continuum that starts at higher energy. We show that, by appropriately tuning the

parameters of the model, the string spectrum can be cleanly seperated from the continuum.

Keywords: Nonperturbative Effects, Bosonic Strings

ArXiv ePrint: 0901.0949

1This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of

the U.S. Department of Energy under Contract DE-AC02-05CH11231.

c© SISSA 2009 doi:10.1088/1126-6708/2009/03/088

mailto:kbardakci@lbl.gov
http://arxiv.org/abs/0901.0949
http://dx.doi.org/10.1088/1126-6708/2009/03/088


J
H
E
P
0
3
(
2
0
0
9
)
0
8
8

Contents

1 Introduction 1

2 The world sheet picture 3

3 The world sheet field theory 4

4 Phase invariance and bosonization 7

5 The mean field approximation 9

6 The ground state at D = 2 And D = 4 11

7 Fluctuations around the mean field 14

8 String formation 18

9 Conclusions 21

1 Introduction

This paper is a natural follow up to a previous work [1], where a new approach to the world

sheet descripton of the planar graphs of the φ3 field theory was formulated. In contrast to

the earlier work on the same subject [2–5], which used a first quantized formalism, the new

formulation is based on second quantization on the world sheet. We have argued in [1] that

this new formulation is both simpler and better founded than the old one. In the same

reference, using a variational ansatz, an approximate ground state of the second quantized

Hamiltonian was constructed in 5 + 1 space-time dimensions. The ground state energy

and the coupling constant turned out to be ultraviolet divergent, needing renormalization.

Reassuringly, these divergences were the ones expected from the perturbation expansion of

the underlying field theory.

In the present article, instead of the variational method, we use the mean field ap-

proximation for the same second quantized Hamiltonian. The motivation for doing this is

twofold: We would like to check on the variational results, using a different approximation

scheme. The mean field method has a long and honorable history in various branches of

physics, and it was used in some of the early work [3–5] on this problem. It is reassuring

that, as we shall see, using this alternate approach, we are able to confirm the results

obtained in [1].

The second reason for trying a different approximation scheme is connected with the

limitations of the variational method, which is useful only for investigating the ground
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state of a quantum system. For example, it is very difficult to extend its reach to the

excited states. In contrast, using the mean field method, one can study the model in full

generality, including the excited states. One of the main goals of this work is to show that

with suitable tuning of the parameters of the model, there is string formation on the world

sheet. We establish this result by showing that the spectrum of the excited states is that

of a string.

As in the earlier work, a central role is played by the field ρ defined on the world sheet

by eq. (3.6). Roughly, ρ measures the density of Feynman graphs on the world sheet, a

concept which we will make more precise later on. An important question is whether ρ0,

the ground state expectation value of ρ, is different from zero. ρ0 vanishes in any finite

order of perturbation theory, whereas a non- zero value for ρ0 means that the world sheet

is densely covered by graphs, and the contribution of high (infinite) order graphs dominate.

This can be thought of as a new phase of the underlying field theory, different from the

perturbative phase. It is natural to expect that a world sheet densely covered by graphs

would lead to a Nambu type action and hence result in string formation; in fact, this was

the picture that motivated some of the very early work on this subject [6, 7]. One of the

main results of this paper is to show that the mean field calculation gives a non-zero ρ0.

We will show that such a non-trivial background exits as a solution to field equations, and

furthermore it minimizes the ground state energy. This background will turn out to be an

essential first step to showing string formation.

Along the way, we will study the ultraviolet divergences that are present in the ex-

pansion around the non-trivial background. These turn out the to be the ones expected

from perturbation theory, and they can be renormalized. Of course, the divergences de-

pend on the number of dimensions; in addition to 5 + 1 dimensions, where the field theory

is renormalizable and asymptotically free, we also consider 3 + 1 dimensions, where the

theory is superrenormalizable. The reason for this is that the superrenormalizable model

with a fixed coupling constant is much easier to analyze, and provides a good warm up

exercise for the more interesting but more difficult case of 5 + 1 dimensions. We find it

very encouraging that the mean field approximation simultaneously captures two desirable

complimentary features: The ultraviolet behaviour is consistent with perturbation theory,

and in the infrared region, the highly non-perturbative phenomenon of string formation

takes place.

Let us summarize the main results to emerge from this investigation. Applying the

mean field approximation to the world world sheet field theory developed in [1], we have

found a non-trivial solution to field equations, with ρ0 6= 0, which minimizes the ground

state energy. This background is in agreement with the variational wave function derived

in [1]. It also means that the phase where the world sheet is densely covered by graphs is

energetically prefered. Expanding around this background to second order, and with some

tuning the parameters of the model, we find that the spectrum of the model is that of a

bosonic string.

In order to have a self contained paper, in sections 2 and 3, we review briefly the

background needed to understand the present work. In section 2, we discuss the general

setup on the world sheet [2, 8], and in section 3, we review the world sheet field theory
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Figure 1. A typical graph

developed in [1]. In section 4, we develop the mean field approximation and set up the

corresponding mean field equations. In section 5, these equations are used to find the

ground state of the model in both 3+1 and 5+1 dimensions. Along the way, we encounter

ultraviolet divergences and show how to eliminate them by renormalization. In particular,

in 5 + 1 dimensions, the cutoff dependence of the bare coupling constant is consistent with

asymptotic freedom. In section 6, we expand the Hamiltonian to second order around the

background found in the previous section. The solution to the resulting equations yields

two different types of spectra: bound states at lower energies and a continuum starting at

a higher energy. In section 7, we show that the spectrum of the bound states is that of a

string with linear trajectories; however, the higher excited states of the string mix with the

continuum, which muddies the string picture. It turns out that, by a suitable adjustment

of the parameters of the model, one can push the continuum arbitrarily high, and thereby

extend the string picture to arbitrarily high energies. Finally, in section 8, we summarize

our conclusions and suggest some directions for future research.

2 The world sheet picture

The generic planar graphs of the φ3 in the mixed light cone representation of ’t Hooft [8]

have a particularly simple form. The world sheet is parametrized by the two coordinates

τ = x+ = (x0 + x1)/
√

2, σ = p+ = (p0 + p1)/
√

2.

A general planar graph is represented by a collection of horizontal solid lines (figure 1),

where the n’th solid line carries a D dimensional transverse momentum qn. Two adjacent

solid lines labeled by n and n+1 correspond to the light cone propagator

∆(pn) =
θ(τ)

2p+
exp

(

−iτ p2
n +m2

2p+

)

, (2.1)

where pn = qn − qn+1. A factor of g, the coupling constant, is inserted at the beginning

and at the end of each line, where the interaction takes place.

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
8

Figure 2. Solid and dotted lines

For technical reasons, it is convenient to discretize the coordinate σ in steps of length

a, which amounts to compactifying the light cone coordinate x− = (x0 − x1)/
√

2 at radius

R = 1/a. This type of compactification was introduced by Casher [9] in the context of the

lightcone quantization of gauge theories. In the context of the lightcone worldsheet and the

discretization of the σ coordinate to enable summing planar diagrams, this discretization

was first proposed and exploited by Giles and Thorn [10]. Later, it was found useful in

connection with the M theory [11, 12]. In this paper, the σ coordinate will always be

discretized; in contrast, the time coordinate τ will remain continuous.

We also have to specify the boundary conditions to be imposed on the world sheet. For

simplicity, the coordinate σ is compactified by imposing periodic boundary conditions at

σ = 0 and σ = p+, where p+ is the total + component of the momentum flowing through

the whole graph. In contrast, since we will adopt the Hamiltonian approach, the boundary

conditions at τ = ±∞ will be left free.

There is a useful way of visualizing the discretized world sheet. As pictured in figure 2,

the world sheet consists of horizontal dotted and solid lines, spaced a distance a apart. Just

as in figure 1, the boundaries of the propagators are marked by solid lines, in contrast, the

bulk is filled with dotted lines. Ultimately, one has to integrate over all possible locations

and lengths of solid lines, as well as over the transverse momenta they carry.

3 The world sheet field theory

In this section, we will briefly review the world sheet field theory developed in [1], which

reproduces the light cone graphs described in the previous section. We start by introduc-

ing the bosonic field φ(σ, τ,q), and its conjugate φ†(σ, τ,q), which at time τ respectively

annihilate and create a solid line carrying momentum q and located at site labeled by σ.

They satisfy the commutation relations

[φ(σ, τ,q), φ†(σ′, τ ′,q′)] = δσ,σ′ δ(q − q′). (3.1)

– 4 –
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The vacuum corresponds to a state with only dotted lines (empty world sheet), and

it satisfies

φ(σ,q)|0〉 = 0. (3.2)

Since we are in the Hamiltonian picture with time τ is fixed, in equations of this type, we

do not usually explicitly write the time dependence. By applying φ† s on vacuum, one can

then construct states with arbitrary number of solid lines.

Having defined the Fock space, a first go at the Hamiltonian could look like

the following:

H = H0 +HI ,

H0 =
∑

σ′>σ

∫

dq

∫

dq′ (q − q′)2 +m2

2(σ′ − σ)
φ†(σ,q)φ(σ,q)φ†(σ′,q′)φ(σ′,q′),

HI = g
∑

σ

∫

dq
(

φ(σ,q) + φ†(σ,q)
)

. (3.3)

It is easy to check that H0, applied to a state with two solid lines, generates the free propa-

gator of eq. (2.1), and HI , converting a solid line into a dotted one and vice versa, generates

the interaction. There are, however, several problems with this guess for the Hamiltonian:

a) The Hilbert space has redundant states, corresponding to multiple solid lines at the

same site, generated by repeated applications of φ† at the same σ.

b) Propagators should be assigned only to adjacent solid lines, whereas the above H0

generates unallowed propagators associated with non-adjacent solid lines.

c) The prefactor 1/(2p+) of the propagator is missing.

These problems can be solved simultaneously by introducing a two component fermion

field ψi(σ, τ), i = 1, 2, and its adjoint ψ̄i on the world sheet [13]. They satisfy the standard

anticommutation relations

[ψi(σ, τ), ψ̄i′ (σ
′, τ)]+ = δi,i′δσ,σ′ , (3.4)

and propagate freely on an uninterrupted line. The fermion with i = 1 lives on the dotted

lines and the one with i = 2 lives on the solid lines. It was shown in [1] how to overcome

the problems listed above with the help of the fermions. Here, we will only present the

final result, and refer the reader to [1] for the details.

To get rid of the redundant states, we impose the following constraint at a fixed time

on the Fock space:
∫

dqφ†(σ,q)φ(σ,q) − ρ(σ) = 0, (3.5)

where ρ is the composite field

ρ =
1

2
ψ̄(1 − σ3)ψ, (3.6)

which is equal to one on solid lines and zero on the dotted lines. This constraint ensures

that there is at most one solid line at each site, thereby avoiding problem a).

– 5 –
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Figure 3. The two φ3 vertices

To avoid the unwanted propagators of b), we define, for any two lines located at σi

and σj , with σj > σi,

E(σi, σj) =

k=j−1
∏

k=i+1

(1 − ρ(σk)) . (3.7)

If σj < σi, E is defined to be zero. The following property of this function that will be

needed: E(σi, σj) is equal to one only if the two solid lines at σi and σj are seperated only

by dotted lines. If there is one or more solid lines in between, it is zero. If we now redefine

H0 as

H0 =
1

2

∑

σ,σ′

∫

dq

∫

dq′ E(σ, σ′)

σ′ − σ

(

(q − q′)2 +m2
)

×φ†(σ,q)φ(σ,q)φ†(σ′,q′)φ(σ′,q). (3.8)

By applying H0 to a state with several solid lines, it is easy to see that E(σ, σ′) projects

out all the unwanted propagators.

There remains the problem c), the problem of the missing prefactor. As explained in

reference [1], it is best to attach this factor to the vertices. Consider two types of vertices,

corresponding to the beginning and ending of a solid line, pictured in figure 3. The solid

lines are labeled as 1, 2 and 3, and the momenta that enter the vertices are labeled by the

corresponding pair of indices 12, 23 and 13 respectively. Attaching a factor of

V =
1

√

8 p+
12p

+
23p

+
13

=
1

√

8(σ2 − σ1)(σ3 − σ2)(σ3 − σ1)
(3.9)

to each vertex, takes care of the missing prefactors. However, we still face a problem similar

to the one encountered with the construction of H0. In the vertices of figure 3 , the solid

lines 1 and 3 at one end of the vertex should be seperated by only the dotted lines. To

ensure this, we define

V(σ2) =
∑

σ1<σ2

∑

σ2<σ3

ρ(σ1)E(σ1, σ3)ρ(σ3)
√

8(σ2 − σ1)(σ3 − σ2)(σ3 − σ1)
. (3.10)
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The numerator of this expression picks the correct vertex configuration, and it projects out

all the other unwanted configurations. With the help of this vertex, we can rewrite the

final form of HI , which includes the additional factor V of eq. (3.9):

HI = g
∑

σ

∫

dq
(

V(σ)φ(σ,q) ρ+(σ) + ρ−(σ)φ†(σ,q)V(σ)
)

, (3.11)

where,

ρ± =
1

2
ψ̄(σ1 ± iσ2)ψ.

The additional factors ρ± are needed to make sure that a solid line in the Fock space is

always paired with an i = 2 fermion and a dotted line with an i = 1 fermion.

Now that the various pieces that make up the total Hamiltonian are in place, we define,

H = H0 +HI +H ′, (3.12)

where H0 and HI are given by eqs. (3.8) and (3.11), and,

H ′ =
∑

σ

(
∫

dqφ†(σ,q)φ(σ,q) − ρ(σ)

)

λ(σ), (3.13)

implements the constraints (3.5) by means of a Lagrange multiplier λ.

Taking advantage of (3.5), it is possible to rewrite the free Hamiltonian in a somewhat

simpler form:

H0 =
1

2

∑

σ 6=σ′

G(σ, σ′)
(

ρ(σ)

∫

dq′ q′2 φ†(σ′,q′)φ(σ′,q′) +
1

2
m2ρ(σ)ρ(σ′)

−
∫

dq

∫

dq′ (q · q′)φ†(σ,q)φ(σ,q)φ†(σ′,q′)φ(σ′,q′)
)

, (3.14)

where, to simplify writing, we have defined,

G(σ, σ′) =
E(σ, σ′) + E(σ′, σ)

|σ − σ′| .

Although we will mostly stick with the Hamiltonian picture in this paper, if so desired,

one can switch to the path integral approach based on the action

S =

∫

dτ

(

∑

σ

(

iψ̄∂τψ + i

∫

dqφ†∂τφ

)

−H(τ)

)

. (3.15)

4 Phase invariance and bosonization

It is easy to verify that the above action is invariant under the following

phase transformation:

ψ → exp

(

− i

2
ασ3

)

ψ, ψ̄ → ψ̄ exp

(

i

2
ασ3

)

,

φ → exp(−i α )φ, φ† → exp(i α )φ†, λ→ λ− ∂τα. (4.1)

– 7 –
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Here α is an arbitrary function of σ and τ , so this is a gauge transformation on the world

sheet. By a suitable gauge fixing, it should be possible to eliminate one of the degrees of

freedom of the fermionic field ψ. To see how this comes about, it is very convenient first

to bosonize ψ. In addition to ρ (eq. (3.6)), we introduce the bosonic field ξ and set,

ψ̄σ3ψ = 1 − 2 ρ, ψ̄σ1ψ = 2
√

ρ− ρ2 cos(ξ),

ψ̄σ2ψ = 2
√

ρ− ρ2 sin(ξ). (4.2)

The first equation is simply a rewrite of eq. (3.6). The kinetic energy term for ψ in eq. (3.15)

can be replaced by its bosonic counterpart:

∫

dτ
∑

σ

i ψ̄∂τψ →
∫

dτ
∑

σ

ξ ∂τρ. (4.3)

One can check that this action produces the correct equations of motion and the correct

commutation relations for the fermionic bilinears.

We note that bosonization has replaced discrete variables by continous ones. For

example, according to its original definition as a composite field (eq. (3.6)), ρ could only

take on the values 0 and 1, but as an independent bosonic field, it can vary continuously

between 0 and 1. It is natural to interpret it as the probability of finding a solid line at

a given location. As we shall see in the next section, the reformulation of the problem in

terms of continuous variables provides a convenient setup for the mean field approximation.

Now consider the effect of the phase transformation (4.1) on the bosonic fields: ρ is

unchanged, whereas ξ transforms according to

ξ → ξ + α,

and therefore, we can gauge fix by setting

ξ = 0. (4.4)

In this gauge, and with fermions bosonized, the interaction Hamiltonian (3.11) becomes

HI → g
∑

σ

V(σ)
√

ρ(σ) − ρ2(σ)

∫

dq
(

φ(σ,q) + φ†(σ,q)
)

. (4.5)

Although the field ξ disappeared from the problem, its equation of motion, namely

∂τρ = 0, (4.6)

has to be imposed as a constraint. This constraint means that being time independent, ρ

is no longer a dynamical field. Recalling that we have not specified the initial conditions,

we can do so now by assigning an arbitrary probability distribution ρ(σ) for the solid

lines at some initial time. This probability distribution is then constant in time by virtue

of the above constraint. In the next section, ρ(σ) will be determined in the mean field

approximation by minimizing the ground state energy.

– 8 –
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5 The mean field approximation

The Hamiltonian (3.12) is exact but quite complicated; for example, it is non-local in

the coordinate σ. Clearly, it is not a good starting point for doing the usual Feynman

perturbation expansion. The standard perturbation theory is an expansion in the ρ0 = 0

phase of the model. Instead, we are here interested in the phase where Feynman graphs

are dense on the world sheet, with ρ0 6= 0. In this new phase, the Hamiltonian (3.12), in

conjunction with the mean field method, turns out to be an excellent starting point for

doing calculations. In fact, in the standard approach, one would be at a loss to even define

the new phase precisely.

In reference [1], a variational approach was used to calculate the ground state of (3.12).

Here, instead, the mean field approximation will enable us to compute, in addition to the

ground state, the excited modes of the model. We should point out right at the beginning

that, for the meanfield method to make sense, we have to take the total number of lines

on the world sheet,

N0 = p+/a, (5.1)

to be large but finite. So we are close to the world sheet continuum limit, but a is always

kept non-zero to avoid ill defined expressions.

The mean field approximation amounts to replacing every bosonic field in the Hamil-

tonian by its ground state expectation value, and then minimizing the resulting ground

state energy. The subscript “0” will indicate the expectation value of the corresponding

field; for example, 〈ρ〉 = ρ0, 〈φ〉 = φ0, and so on. We will assume that the ground state is

invariant under translations of σ and τ , so that the expectation values of the fields do not

depend on these variables. Therefore, ρ0 and λ0 are constants, whereas φ0 and φ†0 depend

only on q. Furthermore, by rotation invariance, they can only depend on the length of the

vector q. We also note that in view of the discussion at the end of the last section, ρ is

not a dynamical field but it merely serves to fix the initial conditions. Letting ρ → ρ0 is

an exact replacement; there are no fluctuations around ρ0. This means that we have once

for all fixed the initial conditions so as to minimize the ground state energy.

Replacing every bosonic field by its expectation value, as indicated above, considerably

simplifies the Hamiltonian. Let us start with the free Hamiltonian H0. Setting ρ = ρ0 in

the definition of E , we have,

E(σ, σ′) = (1 − ρ0)
n, n = (σ′ − σ)/a− 1,

G(σ, σ′) =
(1 − ρ0)

n

a(n+ 1)
, σ′ > σ,

∑

σ′>σ

G(σ, σ′) = − ln(ρ0)

a(1 − ρ0)
. (5.2)

In writing this equation, we have assumed that the sum over n extends all the way to

infinity, whereas in reality, there is an upper cutoff of the order of N0 (eq. (5.1)). But since

N0 is very large, this makes a difference only for very small values of ρ0. In what follows,

– 9 –
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we will always keep ρ0 away from zero. Substituting the above result in H0, we get,

E0 = 〈H0〉 = N0F (ρ0)

(
∫

dqq2 |φ0(q)|2 +
1

2
m2 ρ0

)

, (5.3)

where we have defined,

F (ρ0) = − ρ0 ln(ρ0)

a(1 − ρ0)
.

Notice that the last term on the right hand side of eq. (3.14) vanishes because of the

rotation invariance of φ0(q).

Next, we focus on HI (eq. (4.5)), replacing ρ by ρ0 and φ by φ0.ith this replacement,

V becomes independent of σ2; it depends implicitly only on ρ0:

V =
ρ2
0√

8a3
W (ρ0),

W (ρ0) =

∞
∑

n1=0

∞
∑

n2=0

(1 − ρ0)
n1+n2+1

√

(n1 + 1)(n2 + 1)(n1 + n2 + 2)
. (5.4)

The ground state value of HI , EI , is then given by

EI = N0 g V(ρ0)
√

ρ0 − ρ2
0

∫

dq (φ0(q) + φ∗0(q)) , (5.5)

and the total ground state energy Et by

Et = E0 + EI +N0 λ0

(
∫

dq |φ0(q)|2 − ρ0

)

, (5.6)

where E0 is given by (5.3).

The next step is to write down the classical equations of motion that result from varying

Et with respect to the expectation values of the fields. The solution to these equations will

then determine the ground state energy. We will first write down the equations gotten by

varying Et with respect to φ0 and λ0:

∂Et

∂φ0(q)
= 0 → φ0 = φ∗0 = −g

√

ρ0 − ρ2
0 V(ρ0)

λ0 + F (ρ0)q2
, (5.7)

∂Et

∂λ0
= 0 → ρ0 = g2 V2(ρ0) (ρ0 − ρ2

0)

∫

dq
(

λ0 + F (ρ0)q
2
)−2

. (5.8)

Apart from some redefinition of constants, φ0(q) is the same as the variational wave func-

tion A(q) of reference [1]. This suggests that the mean field and the variational approxi-

mations are closely related.

Our goal is to eliminate all subsidiary variables except for ρ0, and to express Et in

terms of only this remaining variable. We will then search for the minimum value of Et

and see whether this is realized for a value of ρ0 different from zero and one. As explained

earlier, if ρ0 turns out to be zero, we then have a trivial ground state corresponding to

an empty world sheet. ρ0 = 1 corresponds to a world sheet where every line is an eternal

solid line, which is simply a bunch of free propagators and therefore trivial. In contrast,

– 10 –
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a value for ρ0 different from zero or unity means that the ground state corresponds to a

world sheet densely covered by interacting Feynman graphs. This is the kind of ground

state that can lead to interesting phenomena, such as string formation.

Equation (5.8) involves an integral over q, and in order to proceed further, the dimen-

sion D of the transverse space, which has been arbitrary up to now, has to be specified.

We will investigate this equation for D = 2 and D = 4 in the next section.

6 The ground state at D = 2 And D = 4

D = 2 (3+1 space-time dimensions) and D = 4 (5+1 space-time dimensions) are two

interesting choices for the φ3 theory. In the first case, the model is superrenormalizable;

the coupling constant is finite, and there is only a logarithmic mass divergence. Eqs. (5.7)

and (5.8) can be used to eliminate λ0 and φ0, and therefore the ground state energy Et

can be expressed solely in terms of ρ0. In contrast, at D = 4, the model is renormalizable

and asymptotically free. In this case, λ0 stays in the problem and it can be used to define

the renormalized coupling constant through eq. (6.8). This is a familiar situation, related

to asymptotic freedom and the running of the coupling constant. All of this is in complete

agreement with the well known results from perturbation theory.

Let us now set D = 2 in eq. (5.8). The integral is finite, and after doing it, the result

can be written as

λ0 = π g2 V2(ρ0)
1 − ρ0

F (ρ0)
. (6.1)

Combining this with (5.7), Et can be expressed as a function of only ρ0. The result,

however, contains two integrals

∫

dqφ0(q),

∫

dqq2 φ2
0(q),

which diverge logarithmically for large q. We evaluate these using a cutoff Λ in |q|, and

obtain the following final result for the ground state energy:

Et = N0

(

−π g2 V2(ρ0)
ρ0 − ρ2

0

F (ρ0)

(

ln

(

F Λ2

λ0

)

+ 1

)

+
1

2
m2 ρ0 F (ρ0)

)

. (6.2)

To minimize the energy, we search for the solutions of

∂Et

∂ρ0
= 0. (6.3)

We note that, in the limit Λ → ∞, the location of the minimum is solely determined by

the cutoff dependent term in Et. At the same time, we would like to introduce a mass

counter term to cancel the cutoff dependence. This is done by replacing m in (5.3) by the

bare mass m0 and setting

m2
0 = s ln

(

Λ2/µ2
)

, (6.4)

where s is a parameter which will later be ajusted to cancel the divergence. One has first

to minimize the cutoff dependent terms in Et at fixed s and Λ with respect to ρ0, and then
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Figure 4. The function L(x)

adjust s so that in the final expression, the logarithmic divergence cancels. This leads to

two simultaneous equations for the two parameters ρ0 and s:

− π g2 ∂

∂ρ0

(

V2(ρ0)
ρ0 − ρ2

0

F (ρ0)

)

+
1

2
s
∂

∂ρ0
(ρ0 F (ρ0)) = 0,

−π g2 V2(ρ0)
(ρ0 − ρ2

0)

F (ρ0)
+

1

2
s ρ0 F (ρ0) = 0. (6.5)

Eliminating s, the two equations reduce to a single equation:

∂L(ρ0)

∂ρ0
= 0, (6.6)

where L is given by

L(ρ0) =
W 2(ρ0) ρ

2
0 (1 − ρ0)

3

ln2(ρ0)
,

and W by (5.4). Now,

W (ρ0) → π3/2 (ρ0)
−1/2

as ρ0 → 0, and

W (ρ0) → 2−1/2 (1 − ρ0)

as ρ0 → 1. The function L, schematically plotted as a function of x = ρ0 in figure 4,

vanishes at both ρ0 = 0 and ρ0 = 1, and it is positive in between. Its derivative has a

single zero in the interval, corresponding to cutoff independent minimum for Et at ρ0 6= 0.

The coefficient of the logarithmic cutoff term in Et,

Z(ρ0) = −π g2 V2(ρ0)
ρ0 − ρ2

0

F (ρ0)
+

1

2
s ρ0 F (ρ0), (6.7)

is plotted schematically as a function of x = ρ0 in figure 5. There are two minima, a trivial
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one at ρ0 = 0, and the non-trivial one at some point in the interval 0 < ρ0 < 1. Although

these minima appear degenerate, that is because Z does not include the cutoff independent

terms in Et. These terms have no influence on the position of the minima, but the value

of Et at the non-trivial minimum does depend on them. For example, we can change it by

adding an arbitrary cutoff independent term to m2
0 in (5.8). In this way, we can adjust Et

to be negative at the non-trivial minimum, so that it becomes the true global minimum.

We conclude that one can arrange to have a global minimum of the energy which is cutoff

independent at a non-zero value of ρ0.

Let us now consider the case D = 4. The integral that appears in equation (5.8) is now

logarithmically divergent. We introduce a cutoff Λ as before, and after doing the integral,

the result can be written in the form,

1

g2
0

= π2 V2(ρ0)
1 − ρ0

F 2(ρ0)

(

ln

(

ρ0 F Λ2

λ0

)

− 1

)

, (6.8)

where g has been replaced by g0 in anticipation of renormalization. It is now natural to

define the renormalized coupling constant gr at the energy scale corresponding to λ0: by

g2
r = g2

0 ln

(

Λ2

λ0

)

. (6.9)

This equation is consistent with the well known asymptotic freedom of the φ3 theory

in 5 + 1 dimensions. Also, the results derived here, using the mean field method, in

particular the expression for φ0 (eq. (5.7)), are in agreement with those derived in [1] using

a variational calculation.

Just as in the case D = 2, the ground state energy Et can be calculated by eliminating

the auxilliary variables. The integrals over q that one encounters are now quadratically
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divergent, and the leading cutoff dependent piece plus the mass term in Et is given by

Et ≈ N0

(

−π2 g2 V2(ρ0)
ρ0 − ρ2

0

F (ρ0)
Λ2 +

1

2
m2

0 ρ0 F (ρ0)

)

. (6.10)

Apart from a different power of π, the coefficient of Λ2 is identical to the coefficient of

ln(Λ) in (6.2) for D = 2. Consequently, letting

m2
0 = sΛ2,

we end up with eq. (6.6), and the same minimum ρ0 6= 0 as before.

7 Fluctuations around the mean field

In the last section, using the mean field approximation, we found a non-trivial ground

state corresponding to non-vanishing bosonic fields. The next step would be to treat this

solution as a classical background, and to calculate the quadratic fluctuations about this

background. This would then give us the spectrum of the free theory based on this new

ground state. The cubic and higher order terms in the fluctuations will be responsible for

the interactions and they will not be considered here. We will see in this section that,

the spectrum of the fluctuating modes consists of two sectors: A continuum and discrete

bound states. It is the bound states that generate the string spectrum, which eventually

merges into the continuum. In an appropriately defined limit N0 → ∞, the continuum

can be pushed all the way up, leaving behind the spectrum of a free bosonic string. As

discussed in the introduction, this is not unexpected: When the world sheet is uniformly

and densely covered by graphs, it is reasonable to expect that it can be described by an

effective Nambu action, leading to a string picture.

In what follows, we will fix the fields λ and ρ at their classical values λ0 and ρ0

respectively. For the field ρ, this is no restriction; as we have argued earlier, ρ is fixed by the

boundary conditions and does not fluctuate. λ could in principle fluctuate; however, since

this field carries no momentum, it is not expected to contribute to the string trajectories.

The only fields that carry momentum are φ(σ,q) and φ†(σ,q), and we will calculate to

second order the fluctuations of these fields around their ground state expectation values.

Defining Hp the collection of φ dependent terms in the Hamiltonian, we have,

Hp =
∑

σ,σ′

(

1

2
G(σ, σ′) ρ0

∫

dqq2 φ†(σ,q)φ(σ,q) + λ0

∫

dqφ†(σ,q)φ(σ,q)

−
∫

dq

∫

dq′ (q · q′)φ†(σ,q)φ(σ,q)φ†(σ′,q′)φ(σ′,q′)

)

. (7.1)

We have not included HI since it is linear in φ and φ† and consequently does not con-

tribute to the quadratic terms in fluctuations. Before expanding Hp around the classical

background, it is convenient to define

φr =
1

2
(φ+ φ†), φi =

1

2i
(φ− φ†),
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and,

φr(σ,q) = φ0(q) +

(

1

2

(

F (ρ0)q
2 + λ0

)

)1/2

χ1(σ,q),

φi(σ,q) =

(

1

2

(

F (ρ0)q
2 + λ0

)

)1/2

χ2(σ,q), (7.2)

where χ1,2 are the fluctuating fields and the background φ0 is given by (5.7).

The terms quadratic in χ1,2 in the Hamiltonian are,

H(2) =
1

2

∑

σ

∫

dqχ2
2(σ,q) +

∑

σ,σ′

∫

dq

∫

dq′ χ1(σ,q)M(σ,q, σ′ ,q′)χ1(σ
′,q′), (7.3)

where G is given by (4.2) and M by

M(σ,q, σ′,q′) =
1

2

(

F q2 + λ0

)2
δσ,σ′ δ(q − q′) (7.4)

−G(σ, σ′)
(

F q2 + λ0

)1/2
φ0(q) (q · q′)

(

F q′2 + λ0

)1/2
φ0(q

′).

The energy levels of the excited states are determined by diagonalizing M . The eigen-

functions can be written as a product:

χ1 → fη(σ)hω,η(q),

where f is an eigenstate of G
∑

σ′

G(σ, σ′) fη(σ
′) = η fη(σ

′) (7.5)

with eigenvalue η, and h satisfies,

ω hω,η(q) =
(

F q2 + λ0

)2
hω,η(q) − 2η

(

F q2 + λ0

)1/2
φ0(q)

×
∫

dq′ (q · q′)
(

F q′2 + λ0

)1/2
φ0(q

′)hω,η(q
′). (7.6)

The next step is to solve eqs. (7.5) and (7.6). We first focus on (7.6). The solutions

fall into two classes:

a) ω is in the continuum. The solution is given by

hω,η(q) = δ(q2 − β2) h̃ω(q), (7.7)

where β is a real number, and the function h̃ω has to satisfy
∫

dq δ(q2 − β2)q h̃ω(q) = 0, (7.8)

but is otherwise arbitrary. ω is given by

ω = F (ρ0)β
2 + λ0. (7.9)

Keeping in mind that both λ0 and F are positive, as β goes from 0 to ∞, ω varies

continuously between λ0 ≥ 0 and ∞. This kind of continuous spectrum is expected

from the perturbative analysis of the underlying field theory.
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b) Now suppose the integral in (7.8) does not vanish. In this case, the solution to

eq. (7.6) can be written as

hi
ω(q) = 2 η C qi

(

F q2 + λ0

)1/2
φ0(q)

(F q2 + λ0)
2 − ω

. (7.10)

C is an arbitrary normalization constant and the index i ranges from 1 to D over

the transverse space, giving rise to D independent solutions. Substituting this back

in (7.6) gives the consistency condition

qi = 2 η

∫

dq′ q′i (q · q′)

(

F q′2 + λ0

)

φ2
0(q

′)
(

F q′2 + λ0

)2 − ω
. (7.11)

So far, D has been arbitrary, but now we specialize to the case D = 2. The consistency

condition then reads

1 =
π η g2 (ρ0 − ρ2

0)V2

λ0 F 2
K(ω̄), (7.12)

where ω̄ = ω/λ2
0 and

K(ω̄) =

∫ ∞

0
dx

x

(x+ 1) ((x+ 1)2 − ω̄)
. (7.13)

The integral can be evaluated but it is just as easy to deal with it directly. Substituting

the expression for λ0 given by (6.1), the consistency condition can be rewritten as

1 =
η ρ0

F (ρ0)
K(ω̄). (7.14)

The above equation, which will in general have discrete solutions, can be thought of

as an eigenvalue equation for bound states. We now study it for various ranges of values

of ω̄. To do this, we have to know something about η. We shall shortly show that

0 <
η ρ0

F (ρ0)
≤ 2. (7.15)

For the moment, let us assume this result and first consider the range ω̄ > 1. The in-

tegral (7.13) is then ill defined, and if one uses the iǫ prescription to define it, it will

become complex. This is easy to understand; the dicussion following eq. (7.9) shows that

the continuum starts at ω̄ = 1, and therefore the bound state is now sitting on top of the

continuum and can decay into it. The imaginary part of the integral (7.13) is the reflection

of this instability.

Next consider the range 0 ≤ ω̄ ≤ 1. In this range, the integral is well defined, and K

varies monotonically from K(0) = 1/2 to K(1) = ln(2) ≈ 0.69. Then, for a suitable range

of η in the interval allowed by (7.15), there is a unique solution for ω̄ for a given η. For the

rest of the paper, since we will only be interested in the stable bound states, this range for

ω̄ will be the focus of our attention. In particular, there is a special solution with ω̄ = 0,

which will play an important role in the subsequent development. We will shortly see that

there exists an η for which
η ρ0

F (ρ0)
= 2, (7.16)
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and, for this η, recalling that K(0) = 1/2, the corresponding ω̄ = 0.

There is, of course, a special significance to a zero frequency oscillation around a

fixed background. In the case of classical solutions such as solitons or instantons, the

existence of a zero mode is usually a consequence of a symmetry, such as, for example,

translation invariance, which is broken by the classical solution. Integration over the zero

mode restores this symmetry. In the present case, the symmetry is translation invariance

in q: The Hamiltonian of eq. (3.12) is invariant under

q → q + r, (7.17)

where r is a constant vector, whereas the classical solution (5.7) for φ0(q) clearly breaks

this symmetry. The ω̄ = 0 solution is then the Goldstone mode of this broken symmetry.

It is easy to show that, up to normalization, the corresponding χ1 is generated by an

infinitesimal translation in q of the background φ0(q):

χi
1 → ∂

∂qi
φ0(q).

Finally, we have to consider the remaining range ω̄ < 0. The existence of a solution

for this range would be a disaster, since it would correspond to a completely tachyonic

spectrum. Fortunately, there is no such solution. To show this, we observe that the

integral (7.13) is a monotonically increasing function of ω̄ for ω̄ < 0, so that

K(ω̄) < K(0) = 1/2

for negative ω̄. In view of the upper bound on η given by (7.15), the eigenvalue equation

cannot be satisfied for negative ω̄.

Most of the preceding development goes through in the case D = 4, except the consis-

tency condition (7.11) now involves a logarithmically divergent integral:

1

g2
0

= π2 η V2 ρ0 − ρ2
0

2F 3

∫ F Λ2/λ0

0
dx

x2

(x+ 1) ((x+ 1)2 − ω̄)
. (7.18)

We again search for the Goldstone mode by setting ω̄ = 0 in the above integral and fixing

η by eq. (7.16). The result is

1

g2
0

= π2 V2(ρ0)
1 − ρ0

F 2(ρ0)

(

ln

(

F Λ2

λ0

)

− 3

2

)

. (7.19)

This agrees with eq. (6.8) for the running coupling constant except for the constant term

following the logarithm. This discrepency is due to the naive cutoff we are using in regu-

lating the integrals in eqs. (5.8) and (7.11). This cutoff violates the translation invariance

responsible for the zero mode. What is important is that the cutoff dependent logarithmic

terms in (6.8) and (7.19) agree, and these are the only terms that we will need later on.

Using a more refined scheme of regulation, it should also be possible to bring the constant

terms into agreement. We have not tried to construct such a scheme, since these will play

no role in the subsequent development.
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8 String formation

So far, we have only found zero mode and continuum solutions the basic eq. (7.6). To find

other bound states of interest, we will now proceed to solve the eigenvalue equation (7.5).

This will also enable us to verify the statements (7.15) and (7.16). We make the ansatz

fη(σ) = eikσ, (8.1)

where k is a real number between −π/a and π/a. The left hand side of the eigenvalue

equation can then be evaluated:

∑

σ′

G(σ, σ′) eikσ′

=

∞
∑

n=0

(1 − ρ0)
n

a (n+ 1)
exp (i k (σ + (n + 1)a)) + (k ↔ −k)

= − eikσ

a (1 − ρ0)
ln
(

ρ2
0 + 2 (1 − ρ0) (1 − cos(k a))

)

, (8.2)

from which it follows that,

η(k) = − 1

a (1 − ρ0)
ln
(

ρ2
0 + 2 (1 − ρ0) (1 − cos(k a))

)

, (8.3)

and the ratio that in eq. (7.14) is given by

η ρ0

F (ρ0)
=

ln
(

ρ2
0 + 2 (1 − ρ0) (1 − cos(k a))

)

ln(ρ0)
. (8.4)

From this expression, it is easy to verify (7.15); and also, setting k = 0, eq. (7.16) follows.

As we have already stressed, we are mainly interested in the limit of large N0, which

means small a, and we therefore look for solutions in the limit ka→ 0. In this limit, η ρ0/F

tends to 2, and ω̄ tends to zero. Expanding the right hand side of (8.4) in powers of ka

gives
η ρ0

F (ρ0)
→ 2 +

1 − ρ0

ρ2
0 ln(ρ0)

(k a)2. (8.5)

We shall see that in the limit we are considering, higher order terms in ka will not con-

tribute.

Up to this point, we have been studying the eigenfunctions and eigenvalues of G,

which do not depend on D. Now we turn our attention to K, which does depend on D.

As before, we will first take D = 2. Since, in the limit ka → 0, ω̄ tends to zero, we can

expand eq. (7.13) for K to first order in ω̄:

K(ω̄) → 1

2
+
ω̄

12
, (8.6)

and putting these results in eq. (7.14), we have,

ω → −3 (1 − ρ0)λ
2
0

ρ2
0 ln(ρ0)

(k a)2 =
3π2 g4 ρ4

0 (1 − ρ0)
5W 4(ρ0)

64 a2 | ln(ρ0)|3
k2. (8.7)
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As we shall see shortly, the slope of the expected string depends on ω. If we insist on

a finite slope in the limit of large N0, small a, ω must remain finite in this limit. This

requires the tuning of g by setting,

g2 = a ḡ2 (8.8)

and keeping ḡ fixed and finite as a → 0. This should not be a surprise; a → 0 is the

continuum limit on the world sheet, and it is well known that, to get a sensible continuum

limit, the parameters of a theory defined on a lattice have in general to be fine tuned.

The tuning of the coupling constant by (8.8) has another desirable consequence. From

eq. (6.1), it follows that, as a→ 0,

λ0 ∼ 1/a ∼ N0, (8.9)

and the continous spectrum which starts at

ω̄ = 1, ω = λ2
0

is pushed up to infinity. Therefore, the bound state energies (eigenvalues) stay finite as

the continuum threshold tends to infinity. Of course, for highly excited states with k of

the order of 1/a, this argument breaks down, but the energy of such states can be pushed

up arbitrarily. We shall see that, in this limit, we shall have a string spectrum cleanly

seperated from the high lying continuum.

For ease of exposition we have been treating k as a continuous variable. In reality since

σ is compactified on a circle of circumference p+, and k is quantized according to

k a = 2π n/N0, (8.10)

where n is an integer with |n| ≤ N0. We can therefore replace (8.1) by the normalized

fη(σ) =

√

a

2π
ei k σ, (8.11)

and choose C in (7.10) so that the integral of the square of hi
ω(q) is also normalized to

unity. Let us now define the operators

Qi
k =

∑

σ

∫

dqχ1(σ,q)hi
ω(q) fη(σ)

P i
k =

∑

σ

∫

dqχ2(σ,q)hi
ω(q) fη(σ). (8.12)

We recall that both ω and η are functions of k through eqs. (8.7) and (8.4), and i labels

the components of the vector in the transverse space. P and Q satisfy the commutation

relations

[Qi
k, P

i′

k′ ] = i δk,k′ δi,i′ .

These operators can be thought of as coordinates and momenta of the bound states. Their

contribution to the to the quadratic Hamiltonian (eq. (7.3)) is

H(2) ≈
∑

k,i

(

1

2
P i

k P
i
−k +

1

2
ωkQ

i
k Q

i
−k

)

. (8.13)
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We therefore have a collection of simple harmonic oscillators, labeled by the integer n,

with k = 2π n/p+, and i = 1, 2 (D = 2). Each mode contributes an amount

√
ωk = u k =

2π u

p+
n (8.14)

where u is a constant that can be read off from eq. (8.7) and n is taken to be small compared

to N0. We recall that the Hamiltonian is the light cone variable p−; and also the total

transverse momentum is zero because of the periodic boundary conditions on the world

sheet. The squared mass of the n’th excited state is then given by

M2
n = p+ p− = 2π un+M2

0 . (8.15)

The zero point contribution M2
0 , which we shall not try to calculate here, is the sum of

the renormalized Et and the additional term gotten by normal ordering (8.13). The above

equation tells us that the spectrum is that of a string with linear trajectories, where the

slope α′ is given by

α′ = 2π u =
31/2 π2 ḡ2 ρ2

0 (1 − ρ0)
5/2 W 2(ρ0)

4 | ln(ρ0)|3/2
. (8.16)

We therefore get a positive non-zero slope for a ρ0 in the allowed range 0 ≤ ρ0 ≤ 1, but

different from zero or one. The solution found in section 5 satisfies this condition. Of

course, the highly excited states of the string with mass squared of the order of N0 α
′

merge with the continuum and the string picture breaks down. But as we stressed earlier,

we can push this transition region as high up as we wish by taking N0 arbitrarily large.

Next, we turn our attention to the case D = 4. In this case, we need a more extensive

tuning of the parameters of the model in order to cleanly seperate the string states from

the continuum that starts at ω̄ = 1. Just as in the case D = 2, ω̄ has to be small compared

to unity, and therefore, we again we look for solutions of the consistency equation (7.11)

for small values of ω̄ by expanding η ρ0/F to second order in k a as in eq. (8.1), and the

integral in (7.14) to first order in ω̄. The result is

ω̄ ≈ 6
1 − ρ0

ρ2
0 | ln(ρ0)|

ln

(

F Λ2

λ0

)

(k a)2. (8.17)

Since ω̄ ≪ 1, it follows that

a2 ln

(

Λ2

λ0

)

should be small. Or using (4.1), we have a more precise relation

ln

(

Λ2

λ0

)

/N2
0 = ν ≪ 1. (8.18)

Let us try to make clear which parameters tend to infinity which of them stay finite.

Both λ and N0 tend to infinity, subject to the above relation. As N0 → ∞, the two cutoff

parameters Λ and N0 have to be corrolated:

Λ2 → λ0 exp (ν N0) (8.19)

– 20 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
8

In contrast, in this limit, ν, although small compared to unity, stays fixed and finite.

Similarly, the remaining parameter λ0 is also fixed and finite. It can be expressed in terms

of the slope parameter α′ and ν. Recalling that α′ = 2π u, with u given by eq. (8.14),

we have,

α′ = 2π

(

6
1 − ρ0

ρ2
0 | ln(ρ0)|

ln

(

F Λ2

λ0

))1/2
p+

N0
λ0

→ 2π

(

6
1 − ρ0

ρ2
0 | ln(ρ0)|

ν

)1/2

p+ λ0. (8.20)

This then the equation for the slope. Conversely, one can solve for λ0 in terms of α′, ρ0

and ν. To sum it up, with the tuning of the parameters described above, we have a string

with linear trajectories, whose low lying states are well seperated from the continuum.

So far, expanding Hp (eq. (7.1)) to second order around the classical solution φ0, we

have calculated only the free part of the string Hamiltonian. This is all that is needed

to determine the spectrum. The interaction terms, which are cubic and quartic, can be

calculated from Hp. We shall not carry out this calculation in this article.

9 Conclusions

In the present work, we have applied the mean field approximation to the to the second

quantized world sheet field theory developed in [1]. In this approximation, we have found a

non-trivial solution for the ground state, and showed how to renormalize it. These results

agree with those of [1] based on the variational method, but the mean field method made it

also possible to compute fluctuations around this background. To quadratic order, in addi-

tion to a continuum, a new spectrum of bound states emerged. These bound states generate

a bosonic string with linear trajectories. We have shown that, by a suitable adjustment of

the parameters, it is possible to seperate the string states from the continuum.

The φ3 theory on which the present work is based is an attractive toy model for

mainly its simplicity. It also shares the desirable feature of asymptotic freedom with non-

abelian gauge theories, but it is clearly not a physical theory. The next target of research

should be non-abelian gauge theories; already some initial attempts were made in this

direction [14, 15]. In analogy to what was done for the φ3 theory in [1], we hope to develop

the second quantized world sheet field theory for gauge theories in various dimensions. It

should then be relatively straightforward to apply the mean field method to the resulting

models and see what comes out.
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